
ny

PHYSICAL REVIEW E 66, 066604 ~2002!
Hybrid discrete solitons
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The existence and stability of discrete solitons in waveguide arrays exhibiting a linear variation of the
effective index and a Kerr nonlinearity is studied. We find that the resonant coupling of the conventional
discrete soliton to a linear Wannier-Stark state does not entail soliton decay. We rather observe the formation
of a bound state where the Wannier-Stark state gets nonlinearly modified. This results in an infinite number of
isolated branches of hybrid discrete solitons.
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I. INTRODUCTION

Because of its relevance in many areas of science, non
ear dynamics in discrete systems is well investigated. Pro
nent examples are molecular chains@1#, low-dimensional
crystals@2#, chains of Josephson junctions@3#, antiferromag-
netic materials@4#, and optical waveguide arrays. In partic
lar, the latter system became very attractive as a conven
laboratory to visualize discrete dynamics@5#.

The field dynamics in discrete systems differs from tha
the respective continuous ones where even the linear fea
are considerably modified. For example, the character of
fraction and refraction of light beams in waveguide arra
depends strongly on the transverse wave vector compo
of the incident wave@6#. The overall behavior becomes eve
more complex if nonlinearity comes into play@7#. In wave-
guide arrays, already a simple Kerr nonlinearity produce
diversity of discrete soliton solutions@8,9#. The existence of
dark soliton solutions for focusing nonlinearities@10# is just
one example. Based on these exciting features that hom
neous arrays exhibit, it can be anticipated that linear
nonlinear dynamics in transversely inhomogeneous ar
may be even more diverse. Inhomogeneous chains
coupled oscillators~lattice! have attracted a great deal
interest since the beginning of the last century. In particu
a linear variation of the eigenfrequencies of local oscillat
became a standard problem. Zener investigated electron
lattices with an applied dc field and found that the inhom
geneity gives rise to the formation of localized eigensta
@Wannier-Stark states~WSSs!#, the energy levels of which
are equally spaced@11#. The appearance of this so-calle
Wannier-Stark ladder~WSL! in frequency space has it
equivalent in a periodic motion in real space. But only
cently these Bloch oscillations could be experimentally o
served for electrons in semiconductor superlattices@12# for
atoms in optical lattices@13# and photons in waveguide a
rays@14,15#. However, the performance and observability
this phenomenon is often seriously deteriorated by nonlin
effects, i.e., nonlinearity can prevent the periodic field rec
ery and destroy the regular motion@15#.

The aim of this paper is to disclose the interplay of line
and nonlinear localization in a waveguide array and to sh
that nonlinearly modified WSSs can form bound states w
conventional discrete solitons. These novel localized st
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will be termed as hybrid discrete solitons and their stabi
will be probed.

Besides a linear variation of the properties of the const
ents of the discrete system, other types of inhomogene
have been extensively investigated in the literature. Sim
to the formation of WSS, a stochastic variation of the pro
erties of these constituents can result in the formation
localized linear eigenstates~Anderson localization! @16#.
Likewise, if the finite size of the discrete system is taken in
account, the spectral continuum modifies to a discrete se
localized modes. Previous research in nonlinear latti
@17,18# was aimed at understanding how these kinds of
ear localization affect the existence and stability of nonlin
localized eigenstates, i.e., discrete breathers. Moreover,
linear properties of finite discrete systems with an additio
linear variation of the lattice elements were studied@19#.

II. THE MODEL

We will focus our investigation on waveguide arrays wi
a linear variation of the effective index of the individu
waveguides, which are additionally endowed with a Ke
nonlinearity. The evolution of the mode amplitudean(z) in
the nth guide along the propagation directionz can be de-
scribed by the normalized equations@15#

S i
d

dz
1an1uanu2Dan1an111an2150, ~1!

where the strength of the linear index variation is control
by the parametera. We note that similar dynamical equa
tions describe the dynamics of Bose-Einstein condensate
a tilted periodic potential@20,21# and the motion of electrons
in a crystal or a superlattice with an external dc electric fie
Thus, provided that propagation distancez is replaced by
time t, Eq. ~1! corresponds to the nonlinear Wannier-Sta
problem in one dimension.

Equation~1! is a modification of the nonintegrable dis
crete nonlinear Schro¨dinger equation and was used to mod
recent experiments in inhomogeneous nonlinear waveg
arrays@15#. It conserves powerP and HamiltonianH of the
optical field as

P5(
n

uanu2, ~2a!
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H5(
n

S an11* an1an11an* 1anuanu21
1

2
uanu4D . ~2b!

A similar model where the nonlinearity evokes a nonline
coupling rather than a nonlinear index variation would b
generalized Ablowitz-Ladik equation@22–24#. Because of its
integrability, the Ablowitz-Ladik equation is a well
investigated model, but unfortunately cannot be applied
waveguide arrays because it does not conserve the op
power.

As already mentioned, nonlinear dynamics is always g
erned by an interplay of linear and nonlinear properties o
specific system. Therefore we will start by summarizing
most important features of Eq.~1! in the low power regime,
where it describes photonic Bloch oscillations. They ma
fest themselves by an oscillating propagation of discrete l
beams in waveguide arrays with a linear modification of
effective index~Bloch arrays!. Here we concisely summariz
these linear features. An arbitrary linear eigenstatem of Eq.
~1!, i.e., the WSS, reads as

an
m~z!5un

mexp~ ibmz!. ~3!

Its stationary amplitude distribution

un
m5Jm2n~2/a! ~4!

is localized but extends to a discrete plane wave of the
mogeneous array fora→0. Evidently, for increasinga, the
localization increases too. All eigenstates with varyingm
have the same shape but are localized at different sites
termined by the waveguide with numberm.

The second important feature of solution~3! is the dis-
crete spectrum of the longitudinal wave numbersbm5ma.
This WSL of equidistant resonances sparsely fills the wh
spectral range and gives rise to the recurrence phenom
of Bloch oscillations.

Moreover, Eq.~1! implies a discrete translation symmetr

ãn~z!5an2Dexp~ iDaz!, ~5!

where every solution can be shifted byD guides by adding a
wave number ofDa. Symmetry relation~5! is conserved in
the nonlinear case.

In addition, the dynamics is invariant with respect to
change of the sign of the Kerr nonlinearity. It can be sho
that together with the transformation

an8~z!5~21!na2n* ~z!,

this would just flip the solutions around and introduce
phase jump ofp between adjacent guides.

III. DISCRETE SOLITON SOLUTIONS

In looking for soliton solutions of Eq.~1! in an inhomo-
geneous array asun

m in Eq. ~3!, i.e., discrete solitons o
breathers, it is useful to identify some general properties
this basic equation.

Any motion of localized solutions across the wavegu
06660
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array with a constant velocity would result in a monotono
increase or decrease of the Hamiltonian, thus violating c
servation law~2!. Hence, in the discrete system only resti
solutions have to be considered. By contrast, for the equ
lent continuous system, a transverse gradient of the refrac
index would cause every solution to drift sidewards.

Because of phase symmetry one can get rid of a fast v
ing phase as in Eq.~3!. Therefore the respective solution
become stationary. This has two main consequences. F
the whole spectrum is shifted; and second, no higher h
monics appear. This means that only the resonance of
fundamental wave number of the soliton with the line
waves is critical for the existence of the soliton solution.

The width of the linear WSSs depends on the detun
parametera. For a50, the eigenfunctions are infinitely
wide. Since for a finite power the nonlinearity only allow
for a local modification of the linear system, the wave nu
ber of the soliton must not be situated within the linear sp
trum. Thereforeb.2 is required in Eq.~3! for a50 @25#. In
contrast, foraÞ0, the unbound and discrete spectra of t
Wannier-Stark problem allow for the existence of discre
solitons in the gaps of the WSL. Hence, unlike thea50
case, the spectrum of the nonlinear solutions will be som
how disrupted. But since foraÞ0 the linear eigenfunctions
are localized, the linear spectrum can be locally modified
the nonlinearity with finite energies. Therefore the solito
can attain an arbitrary wave number foraÞ0. But one might
observe some effects caused by the resonances with the
ear spectrum.

The existence of localized WSSs has another consequ
for the soliton solutions for vanishing power. Because
WSSs are localized foraÞ0 and low power nonlinear solu
tions must emanate from the linear eigenstates, soliton s
tions emanate with a finite width from the WSSs. This is
contrast to the casea50, where the linear eigenfunction
are of infinite width, having the consequence that the soli
width, approaches infinity ifb→2.

From above discussion it is obvious that the features
discrete solitons are strongly affected by the linear poten
i.e., linear index variation. Hence, we expect that new clas
of localized solutions will emerge, displaying peculiar pro
erties.

Looking for particular nonlinear eigensolutions~3! of Eq.
~1!, we used an implementation of Newton’s method a
found two distinct types of solutions. First, the fundamen
single-lobed discrete soliton@8,9# of the homogeneous prob
lem (a50) exists also foraÞ0, provided that its wave
numberb lies above the wave number of the WSS spatia
overlapping with the discrete soliton. For example, in
array witha50.5, a localized solution centered around s
m @which resembles a single lobed discrete soliton of
homogeneous problem (a50)], requiresb.3.5. The sec-
ond type represents the nonlinear continuation of WS
which can thus be termed nonlinear WSSs. In Fig. 1 b
types are displayed. Besides these two types of very reg
solutions, we found a variety of other solutions with differe
topology, which will be skipped in the present context.

For a fixed parametera, the single-lobed solitons form a
4-2
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family with the wave numberb as the family parameter
However, unlikea50, this soliton branch breaks apart in
several isolated areas. To understand this splitting, we ta
closer look at the soliton shape displayed in Fig. 2. For so
family parametersb, the soliton compares to a convention
discrete soliton of the homogenous array@a50, see Fig.
2~a!#. But one can imagine that the wave numberb of the
soliton centered around guidem can match the wave numbe
b8 of a nearby guide at sitem8 (m8.m) that is not detuned
by nonlinearity but rather by the externally induced line
index variation (b82b5m8a2b50). The resulting reso-
nant coupling of the soliton to the guidem8 excites the WSS
am8 @see Eqs.~3! and ~4!# that is centered around the guid
m8. Usually, one would expect that the coupling of the so
tary wave to the linear spectrum would lead to soliton dec

FIG. 1. Because of resonances with the linear spectrum, i.e.
WSL, the family of the single-lobed fundamental soliton, which
similar to the fundamental soliton of a homogeneous array, sp
into a ladder of hybrid discrete solitons (a50.5).

FIG. 2. Shape of soliton for~a! b56.25, ~b! b59 ~indicated in
Fig. 1 asA and B); ~c!,~d! effective index of the nonlinearly de
tuned waveguides (5an1uun

mu2) for solitons in~a!,~b! (a50.5).
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But instead, the single-lobed soliton and the emerging n
linear WSS satellite form a different type of soliton, whic
we term hybrid soliton@see Fig. 2~b!#. Since for growingb
these resonances appear in regular intervals, the convent
soliton branch is interrupted periodically. For each resona
with a WSS, two disconnected branches of hybrid solito
appear~see Fig. 3!, which represent the two possible line
combinations between a single-lobed soliton and a WSS
ellite. Tracking a hybrid soliton beyond the initial resonanc
i.e., towards higherb, results in a growth of the satellite
power. The nonlinearity modifies the guides in the area of
satellite such that they stay tuned to that of the origi
strongly localized part@see plateau in Fig. 2~d!#. It is inter-
esting to note that even though the nonlinearity is focusi
the nonlinear WSSs delocalize for growing power.

If several soliton solutions coexist, one expects some
them to be unstable. Therefore we performed a linear sta
ity analysis. After linearization around a soliton state, w
determined the growth rate of respective perturbations. L
in the homogeneous array (a50), single-lobed solitons ap
pear to be essentially stable. In contrast, nonlinear WSS
unstable over a wide range of the parametersa and b.
Therefore, hybrid solitons mainly destabilize if the respe
tive satellites become too large@see Fig. 3~b!#. Hence, each
section of the branch of hybrid soliton solutions is san
wiched between two critical points, where instability sets
We find the onset of a real-valued instability~simple expo-
nential growth of an unstable eigenvector! at the point where
the derivative of the soliton power with respect to the wa
number changes sign. The stable area is limited on the o
side by the onset of a complex-valued instability~oscillatory
growth of an unstable eigenvector!. Probing the dynamica
stability by numerically integrating Eq.~1! supports the as-
sumption that the origin of the instability lies in the WS
satellites. In Fig. 4, a hybrid soliton with strong satellite co
tent was disturbed. While the nonlinear WSS satellite rapi
decays, the strongly localized part withstands the persis
distortions for a long time.

Another important fact can be observed in the propaga
shown in Fig. 4. While the discrete soliton is destroyed
the dynamic instability, its power cannot spread substantia
Even after the decay of the soliton, most of the power st

he

ts

FIG. 3. Each resonance of the single-lobed soliton with the W
gives rise to two hybrid soliton branches of opposite symme
(b55.1). The linear stability analysis in~b! reveals a destabiliza
tion of the single-lobed soliton by the resonances with the W
(a50.5).
4-3
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confined to the area occupied by the soliton before the de
This effect is one more consequence of the localization of
linear eigenstates, which also limits the linear spread
Thus, only nonlinearity can transfer light to remote sites. B
since nonlinear effects decrease for spreading light,
mechanism slows down rapidly. Furthermore, the conse
tion of the Hamiltonian~2b! must result in a rather symme
ric spreading. For finite size arrays, the power dispers
would already stop when one end of the array is reache

The localization of the linear waves also has con
quences for the excitation dynamics of solitons. For syste
with extended linear waves, all excess power of an imper
excitation is radiated away by linear waves and only
soliton part remains localized. In contrast, the existence
localized WSSs leads to a different transient behavior. T
situation is illustrated in Fig. 5~a! where a localized excita
tion gives birth to a soliton. But the excess light cannot
cape from the soliton. Instead, it turns back and destroys
is interesting to note that the period after which the init
soliton is destroyed by the returning quasilinear radiation
multiple of the Bloch oscillation period of the underlyin

FIG. 4. Decay of an unstable hybrid soliton. The unstable W
satellite rapidly decays, while the strongly localized soliton par
robust. The quasilinear radiation is still bounded by the linear in
variation (a50.5, b57.0).

FIG. 5. Excitation dynamics of single-lobed discrete solito

@a0(0)5â, aÞ0(0)50#. The excess light from the imperfect exc
tation returns to the discrete soliton after performing multiple Blo
oscillations. Below a certain threshold@~a! and ~b!#, the initially
excited soliton is destroyed by this linear radiation (a50.5).
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linear system. In Fig. 5~a!, the linear radiation performs a
single Bloch oscillation before it interacts with the solito
and destroys it. In Fig. 5~b!, the excitation survives the firs
of these interactions. Thus the excitation of long living so
tons requires a better matching of the input conditions to
stationary nonlinear solution than it is required for the cor
sponding homogeneous system. This is confirmed by the
perimental results in Ref.@15# where the excitation of dis-
crete optical solitons in linearly detuned waveguide arra
failed for conditions, which proved to be sufficient for th
excitation of solitons in homogeneous arrays@5#. These find-
ings are supported by numerical studies in Ref.@26#, where it
was found that self-trapping in a linearly detuned discr
system requires more power compared to the homogen
one.

Putting our results in a broader context, we notice that
observed phenomena are much more general. Similar eff
have been identified in various other systems with linear
calization. A particular example are finite size lattices, wh
both the number and the extension of linear modes are
ited @18#. In the free spectral range between different line
states, the so-called phantom breathers exist as nonlinea
lutions with finite width. When a phantom breather soluti
is tracked towards another eigenfrequency and crosses
frequency of a linear state, the respective mode is exci
Consequently, a bifurcation diagram is observed, which
similar to that displayed in Fig. 3~b! @compare with Figs. 4
and 5~b! in Ref. @18##. However, the resulting structures a
much more complex than in the Bloch array. The reason
that the linear modes of a finite lattice have different sha
~not like the WSSs, which are basically identical! and that
they usually overlap with respective localized nonlinear
lutions in space. For the hybrid solitons, the localized p
and the satellite are well separated. Furthermore, the s
tions found in Ref.@18# strongly depended on the number
lattice sites. For hybrid solitons this is different, since
ready for a moderate number of waveguides (N@1/a) the
WSL and the WSSs in the central part of the array cor
spond to those of an infinite system@19#. Therefore we did
not observe any influence of the boundaries in our numer
simulations.

Disordered lattices, which seem to be rather distinct fr
the regular Bloch array, are another example, where lin
states can be localized~Anderson localization! @16#. It was
predicted that a fractal set of localized nonlinear solutio
exists within the band of linear states. Every power incre
causes these so-called intraband breathers to delocalize
cause they start to couple to various linear modes@27#.

IV. CONCLUSIONS

In conclusion, we have shown that a family of singl
lobed discrete solitons~which are similar to those known
from conventional, homogeneous arrays! also exists in arrays
with linear index variation. For distinct family parametersb,
they become resonant with the linear spectrum of
Wannier-Stark states. While one would expect these re
nances to annihilate the solitons, they rather lead to the
mation of a new class of hybrid solitons. These hybrid so
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x
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tons are formed as bound states of single-lobed disc
solitons and satellites, which correspond to the nonlinea
modified Wannier-Stark states of the system. The nonlin
Wannier-Stark states are essentially unstable and destab
the originally stable single-lobed solitons near the resona
points. The dynamics of solitons is quite different from th
in a homogenous array because of the localization of
linear waves. A clean excitation even of stable solitons
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virtually impossible because excess energy cannot escap
soliton.
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