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Hybrid discrete solitons
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The existence and stability of discrete solitons in waveguide arrays exhibiting a linear variation of the
effective index and a Kerr nonlinearity is studied. We find that the resonant coupling of the conventional
discrete soliton to a linear Wannier-Stark state does not entail soliton decay. We rather observe the formation
of a bound state where the Wannier-Stark state gets nonlinearly modified. This results in an infinite number of
isolated branches of hybrid discrete solitons.
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[. INTRODUCTION will be termed as hybrid discrete solitons and their stability
will be probed.

Because of its relevance in many areas of science, nonlin- Besides a linear variation of the properties of the constitu-
ear dynamics in discrete systems is well investigated. Promignts of the discrete system, other types of inhomogeneities
nent examples are molecular chaif§, low-dimensional have been extensively investigated in the literature. Similar
crystals[2], chains of Josephson junctiof@, antiferromag-  to the formation of WSS, a stochastic variation of the prop-
netic material§4], and optical waveguide arrays. In particu- erties of these constituents can result in the formation of

lar, the latter system became very attractive as a conveniefficalized linear eigenstatefAnderson localization [16].
laboratory to visualize discrete dynamics. Likewise, if the finite size of the discrete system is taken into

The field dynamics in discrete systems differs from that inaccount, the spectral continuum modifies to a discrete set of

the respective continuous ones where even the linear featur calized modes. Previous research in nonlinear lattices

are considerably modified. For example, the character of dif* 7,19 was _eumed at unders_;tandmg how thqge Kinds O.f lin-
. . . . . ear localization affect the existence and stability of nonlinear
fraction and refraction of light beams in waveguide array

d ds st | the t A Socalized eigenstates, i.e., discrete breathers. Moreover, the
epends strongly on the transverse wave vector componepte o properties of finite discrete systems with an additional
of the incident wavé¢6]. The overall behavior becomes eve

. ! i ; M linear variation of the lattice elements were studig€l].
more complex if nonlinearity comes into play]. In wave-

guide arrays, already a simple Kerr nonlinearity produces a
diversity of discrete soliton solutiori8,9]. The existence of
dark soliton solutions for focusing nonlinearitigh0] is just We will focus our investigation on waveguide arrays with
one example. Based on these exciting features that homogae- linear variation of the effective index of the individual
neous arrays exhibit, it can be anticipated that linear anavaveguides, which are additionally endowed with a Kerr
nonlinear dynamics in transversely inhomogeneous arraysonlinearity. The evolution of the mode amplitueg(z) in
may be even more diverse. Inhomogeneous chains dhe nth guide along the propagation directiarcan be de-
coupled oscillatorglattice) have attracted a great deal of scribed by the normalized equatiofi5]
interest since the beginning of the last century. In particular,
a linear variation of the eigenfrequencies of local oscillators (
became a standard problem. Zener investigated electrons in
lattices with an applied dc field and found that the inhomo- . ] o
geneity gives rise to the formation of localized eigenstateé"’here the strength of the linear |nd.ex.var|at|on is controlled
[Wannier-Stark state/VSS3], the energy levels of which DBy the parameter. We note that similar dynamical equa-
are equally spaceflll]. The appearance of this so-called tions descr_lbe_ the dyn_amlcs of Bose-Elnst_eln condensates in
Wannier-Stark laddefWSL) in frequency space has its fatllted periodic potenungO,Z]]_ and the motion of eIec'Fror)s
equivalent in a periodic motion in real space. But only re-in @ crystal ora superlattice WIFh an gxterngl dc electric field.
cently these Bloch oscillations could be experimentally ob-Thus, provided that propagation distanzés replaced by
served for electrons in semiconductor superlattide®j for ~ time t, Eq. (1) corresponds to the nonlinear Wannier-Stark
atoms in optical lattice§13] and photons in waveguide ar- Problem in one dimension. _ _
rays[14,15. However, the performance and observability of ~Equation(1) is a modification of the nonintegrable dis-
this phenomenon is often seriously deteriorated by nonlineaf€te nonlinear Schdinger equation and was used to model
effects, i.e., nonlinearity can prevent the periodic field recov/€cent experiments in inhomogeneous nonlinear waveguide
ery and destroy the regular moti¢hs). arrgys[lS]. It conserves powelP and HamiltoniarH of the

The aim of this paper is to disclose the interplay of linearoPtical field as
and nonlinear localization in a waveguide array and to show
that nonlinearly modified WSSs can form bound states with PZZ |an|2, (23)
conventional discrete solitons. These novel localized states n

Il. THE MODEL

d
i —+an+|a,|?

4z a,ta,1t+a,_1=0, (1)
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. . , 1, array with a constant velocity would result in a monotonous
H :; ans18n+an;1an +anjag|*+ §|an| . (2b)  increase or decrease of the Hamiltonian, thus violating con-
servation lam2). Hence, in the discrete system only resting

A similar model where the nonlinearity evokes a nonlinearsolutions have to be considered. By contrast, for the equiva-
coupling rather than a nonlinear index variation would be dent continuous system, a transverse gradient of the refractive
generalized Ablowitz-Ladik equatidi22—24. Because of its  index would cause every solution to drift sidewards.
integrability, the Ablowitz-Ladik equation is a well- Because of phase symmetry one can get rid of a fast vary-
investigated model, but unfortunately cannot be applied ting phase as in Eq.3). Therefore the respective solutions
waveguide arrays because it does not conserve the opticeécome stationary. This has two main consequences. First,
power. the whole spectrum is shifted; and second, no higher har-
As already mentioned, nonlinear dynamics is always govimonics appear. This means that only the resonance of the
erned by an interplay of linear and nonlinear properties of gundamental wave number of the soliton with the linear
specific system. Therefore we will start by summarizing thewaves is critical for the existence of the soliton solution.
most important features of E€L) in the low power regime,  The width of the linear WSSs depends on the detuning
where it describes photor_nc Bloch oscﬂlayons. They maniparametera. For @=0, the eigenfunctions are infinitely
fest themselves by an oscillating propagation of discrete lighfyige  since for a finite power the nonlinearity only allows
beams in waveguide arrays with a linear modification of thet, 5 |ocal modification of the linear system, the wave num-
effect|v_e index(Bloch arrays. I_-|ere we conc!sely SUMMArZE ar of the soliton must not be situated within the linear spec-
these linear features. An arbitrary linear eigenstatef Eq. trum. Therefores> 2 is required in Eq(3) for a=0 [25]. In

(1), i.e., the WSS, reads as contrast, fora#0, the unbound and discrete spectra of the

a™(2) = uMexp(i Bm2). 3) Wa.nnier—'Stark problem allow for the existenge of discrete
solitons in the gaps of the WSL. Hence, unlike the=0
Its stationary amplitude distribution case, the spectrum of the nonlinear solutions will be some-
" how disrupted. But since fat# 0 the linear eigenfunctions
Un = Im-n(2/a) (4 are localized, the linear spectrum can be locally modified by

. . . the nonlinearity with finite energies. Therefore the solitons
is localized but extends to a discrete plane wave of the ho- y 9

mogeneous array fag— 0. Evidently, for increasinge, the can attain an arbitrary wave number fo# 0. But one might _
T j c . T observe some effects caused by the resonances with the lin-
localization increases too. All eigenstates with varyimg
have the same shape but are localized at different sites d& spectrum. .
termined by the waveguide with numbex The existence of I_ocallzed WS_Ss.has another consequence
The second important feature of solutiéd) is the dis- for the soliton _solutlons for vanishing power. Because the
crete spectrum of the longitudinal wave numbgs=ma WSSs are localized fox # 0 an(_:j low power nonhnear solu-
: tions must emanate from the linear eigenstates, soliton solu-
Sions emanate with a finite width from the WSSs. This is in

spectral range a_nd gives rise to the recurrence phenomen%gntrast to the case=0, where the linear eigenfunctions
of Bloch oscillations.

Moreover, Eq(1) implies a discrete translation symmetry, are of infinite Width’. hgying the consequence that the soliton
' " width, approaches infinity iB—2.
5) From above discussion it is obvious that the features of
discrete solitons are strongly affected by the linear potential,
i.e., linear index variation. Hence, we expect that new classes
of localized solutions will emerge, displaying peculiar prop-

an(z)=a,_ expliAaz),

where every solution can be shifted Ayguides by adding a
wave number ofA «. Symmetry relatior(5) is conserved in erties

the nonlinear case. . . . . .

In addition, the dynamics is invariant with respect to a Looking for par'_ucular nonlln_ear eigensolutio(® of Eq.
change of the sign of the Kerr nonlinearity. It can be shown(l)' we useq an |mplementat|o_n of N_ewtons method and
that together with the transformation found two distinct types of solutions. First, the fundamental

single-lobed discrete solitdr8,9] of the homogeneous prob-
a/(z)=(—-1)"a* (z), lem (a=0) exists also fora#0, provided that its wave
numberg lies above the wave number of the WSS spatially

this would just flip the solutions around and introduce aoverlapping with the discrete soliton. For example, in an

phase jump ofr between adjacent guides. array with«=0.5, a localized solution centered around site
m [which resembles a single lobed discrete soliton of the
IIl. DISCRETE SOLITON SOLUTIONS homogeneous problemux&0)], requires>3.5. The sec-

ond type represents the nonlinear continuation of WSSs,
In looking for soliton solutions of Eg(1) in an inhomo-  which can thus be termed nonlinear WSSs. In Fig. 1 both
geneous array as,' in Eqg. (3), i.e., discrete solitons or types are displayed. Besides these two types of very regular
breathers, it is useful to identify some general properties ofolutions, we found a variety of other solutions with different
this basic equation. topology, which will be skipped in the present context.
Any motion of localized solutions across the waveguide For a fixed parametet, the single-lobed solitons form a
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FIG. 3. Each resonance of the single-lobed soliton with the WSL
gives rise to two hybrid soliton branches of opposite symmetry

(B8=5.1). The linear stability analysis ifb) reveals a destabiliza-

tion of the single-lobed soliton by the resonances with the WSL
FIG. 1. Because of resonances with the linear spectrum, i.e., thep=0.5).

WSL, the family of the single-lobed fundamental soliton, which is

similar to the fundamental soliton of a homogeneous array, split

into a ladder of hybrid discrete solitong € 0.5).

5
wave number

SBut instead, the single-lobed soliton and the emerging non-

linear WSS satellite form a different type of soliton, which

family with the wave numbelB as the family parameter. we term hybrid solltor[see_ Fig. 2b)]._S|nce for growings .
LT . . .~ these resonances appear in regular intervals, the conventional

However, unlikea=0, this soliton branch breaks apart into liton b his i d periodically. F h

several isolated areas. To understand this splitting, we takeSa{.)'tOn ranch Is interrupted periodically. For each resonance

o . T ' with a WSS, two disconnected branches of hybrid solitons
closer look at the soliton shape displayed in Fig. 2. For some

family parameters, the soliton compares to a conventional appear(see Fig. 3, which represent the two possible linear
imily p . ' P . combinations between a single-lobed soliton and a WSS sat-
discrete soliton of the homogenous arfay=0, see Fig.

2(2)]. But one can imagine that the wave numigeof the ellite. Tracking a hybrid soliton beyond the initial resonance,

soliton centered around guidgecan match the wave number .e., towards highey, results in a growth of the satellite
X 4 ) wer. The nonlinearity modifies th i in the ar f th
B' of a nearby guide at site’ (m’>m) that is not detuned powe e nonlinearity modifies the guides in the area of the

by nonlinearity but rather by the externally induced Iinearsate”ite such that they stay tuned to that of the original
index variation 8'— B—m’a— B=0). The resulting reso- strongly localized parfsee plateau in Fig.(8)]. It is inter-

i . : _ esting to note that even though the nonlinearity is focusing,
nant coupling of the soliton to the guide’ excites the WSS the n%nlinear WSSs delocalizge for growing pov?//er g
a™ [see Eqs(3) and(4)] that is centered around the guide f several soliton solutions coexist, one expects some of
m’. Usually, one would expect that the coupling of the soli-them to be unstable. Therefore we performed a linear stabil-
tary wave to the linear spectrum would lead to soliton decayity analysis. After linearization around a soliton state, we

determined the growth rate of respective perturbations. Like
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in the homogeneous array & 0), single-lobed solitons ap-
pear to be essentially stable. In contrast, nonlinear WSS are
unstable over a wide range of the parametersand g.
Therefore, hybrid solitons mainly destabilize if the respec-
tive satellites become too largeee Fig. 8)]. Hence, each
section of the branch of hybrid soliton solutions is sand-
wiched between two critical points, where instability sets in.
We find the onset of a real-valued instabilitsimple expo-
nential growth of an unstable eigenvegtat the point where
the derivative of the soliton power with respect to the wave
number changes sign. The stable area is limited on the other
side by the onset of a complex-valued instabilibgcillatory
growth of an unstable eigenvectoProbing the dynamical
stability by numerically integrating Eq1) supports the as-
sumption that the origin of the instability lies in the WSS
satellites. In Fig. 4, a hybrid soliton with strong satellite con-
tent was disturbed. While the nonlinear WSS satellite rapidly
decays, the strongly localized part withstands the persistent
distortions for a long time.

Another important fact can be observed in the propagation

FIG. 2. Shape of soliton faf@) 8=6.25, (b) B=9 (indicated in
Fig. 1 asA andB); (c),(d) effective index of the nonlinearly de-
tuned waveguides=t an+|ull|?) for solitons in(a),(b) («=0.5).

shown in Fig. 4. While the discrete soliton is destroyed by
the dynamic instability, its power cannot spread substantially.
Even after the decay of the soliton, most of the power stays
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linear system. In Fig. ®), the linear radiation performs a
single Bloch oscillation before it interacts with the soliton
and destroys it. In Fig. (®), the excitation survives the first
of these interactions. Thus the excitation of long living soli-
tons requires a better matching of the input conditions to the
stationary nonlinear solution than it is required for the corre-
sponding homogeneous system. This is confirmed by the ex-
perimental results in Ref15] where the excitation of dis-
crete optical solitons in linearly detuned waveguide arrays
nonlinear failed for conditions, which proved to be sufficient for the
Wannier-Stark excitation of solitons in homogeneous arr&§$ These find-
state satellite ings are supported by numerical studies in RR26], where it
5 10 15 20 25 130 was found that self-trapping in a linearly detuned discrete
waveguide n system requires more power compared to the homogeneous

propagation distance z
strongly localized peak

o one.
FIG. 4. Decay of an unstable hybrid soliton. The unstable WSS p,,ing our results in a broader context, we notice that the

satellite rapidly decays, while the strongly localized soliton part isobserved phenomena are much more general. Similar effects
robust. The quasilinear radiation is still bounded by the linear inde>have been identified in various other systemslwith linear lo-
variation (¢=0.5, f=17.0). calization. A particular example are finite size lattices, where

! ) _ both the number and the extension of linear modes are lim-
confined to the area occupied by the soliton before the decaygq [18]. In the free spectral range between different linear

This effect is one more consequence of the localization of thates; the so-called phantom breathers exist as nonlinear so-
linear eigenstates, which also limits the linear spreadingy,iions with finite width. When a phantom breather solution
Thus, only nonlinearity can transfer light to remote sites. Butg tracked towards another eigenfrequency and crosses the
since nonlinear effects decrease for spreading light, thigequency of a linear state, the respective mode is excited.
mechanism slows down rapidly. Furthermore, the conservaconsequently, a bifurcation diagram is observed, which is
tion of the Hamiltonian2b) must result in a rather symmet- gimilar to that displayed in Fig.(B) [compare with Figs. 4
ric spreading. For finite size arrays, the power dispersion, 5b) in Ref.[18]]. However, the resulting structures are
would already stop when one end of the array is reached. ,,ch more complex than in the Bloch array. The reason is
The localization of the linear waves also has conseyhy; the linear modes of a finite lattice have different shapes

guences for the excitation dynamics of solitons. For systemcg-.:ot like the WSSs, which are basically identicahd that
with extended linear waves, all excess power of an imperfechey ysually overlap with respective localized nonlinear so-

excitation is radiated away by linear waves and only theions in space. For the hybrid solitons, the localized part
soliton part remains localized. In contrast, the existence of 4 the satellite are well separated. Furthermore, the solu-
localized WSSs leads to a different transient behavior. Thgns found in Ref[18] strongly depended on the number of
situation is illustrated in Fig. @) where a localized excita- |atice sites. For hybrid solitons this is different, since al-
tion gives birth to a soliton. But the excess light cannot Steady for a moderate number of waveguidé&(1/a) the
cape from the soliton. Instead, it turns back and destroys it. Ny/s|” and the WSSs in the central part of the array corre-
is interesting to note that the period after which the initialspond to those of an infinite systefh9]. Therefore we did

soliton is destroyed by the returning quasilinear radiation is gt ghserve any influence of the boundaries in our numerical
multiple of the Bloch oscillation period of the underlying gmulations.

Disordered lattices, which seem to be rather distinct from
the regular Bloch array, are another example, where linear
states can be localize@nderson localization[16]. It was
predicted that a fractal set of localized nonlinear solutions
exists within the band of linear states. Every power increase
causes these so-called intraband breathers to delocalize be-
cause they start to couple to various linear mgd&g.

propagation distance z

IV. CONCLUSIONS

Bloch oscillation periods

In conclusion, we have shown that a family of single-
lobed discrete solitongwhich are similar to those known
from conventional, homogeneous arrpgso exists in arrays

FIG. 5. Excitation dynamics of single-lobed discrete solitonswith linear index variation. For distinct family parametgs
[a9(0)=a, a.(0)=0]. The excess light from the imperfect exci- they become resonant with the linear spectrum of the
tation returns to the discrete soliton after performing multiple BlochWannier-Stark states. While one would expect these reso-
oscillations. Below a certain threshol@a) and (b)], the initially ~ nances to annihilate the solitons, they rather lead to the for-
excited soliton is destroyed by this linear radiatian=0.5). mation of a new class of hybrid solitons. These hybrid soli-
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tons are formed as bound states of single-lobed discretértually impossible because excess energy cannot escape the
solitons and satellites, which correspond to the nonlinearhsoliton.
modified Wannier-Stark states of the system. The nonlinear
Wannier-Stark states are essentially unstable and destabilize

the originally stable single-lobed solitons near the resonance
points. The dynamics of solitons is quite different from that The authors gratefully acknowledge a grant of the Deut-
in a homogenous array because of the localization of theche Forschungsgemeinschaft and support by the European
linear waves. A clean excitation even of stable solitons iISCommunity(Grant No. IST-2000-26005
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